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Abstract
We show how the Lyapunov exponents of a dynamic system can, in general, be
expressed in terms of the free energy of a (non-Hermitian) quantum many-body
problem. This puts their study as a problem of statistical mechanics, whose
intuitive concepts and techniques of approximation can hence be borrowed.

PACS numbers: 02.50.−r, 05.20.−y, 05.30.−d, 05.40.−a

1. Introduction

Lyapunov exponents are an important tool for the characterization of dynamical systems. Their
very definition has a strong statistical-mechanical flavour, as it involves ‘extensivity in time’
of certain quantities regardless of the initial (‘border’) conditions. It is then natural to seek to
express them in an explicitly statistical-mechanical way, in terms of a partition function.

In this paper, building upon previous work, mainly of Graham [1] and Gozzi and Reuter [2],
we show how the study of Lyapunov exponents can be cast as a quantum many-body problem—
in fact a rather standard one, except that the Hamiltonian is in general non-Hermitian. As we
shall see, this does not bring a miraculous solution to all calculational problems, but it serves
two purposes:

• Because the problem is formulated as a standard quantum many-body one, all the tools
developed in that wider context are available. Some, but not all, of them have already been
used as approximation schemes for Lyapunov exponents, but others such as Hartree–Fock,
dynamic mean-field theory and the renormalization group seem promising.

• More important, general theoretical results are re-expressed in a language that is often
familiar. A typical example is when one asks whether finite-dimensional systems have
a limit Lyapunov density function ρ(λ): in this setting the question becomes whether a
quantum finite-dimensional system has an extensive free energy for all chemical potentials.
Although this does not in itself prove the existence of ρ(λ) in the thermodynamic limit, it
renders it intuitive and acceptable, at least up to the level of rigour of theoretical physics.
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Consider a general dynamical system,

ẋi = fi(x, η) i = 1, . . . , N (1)

and, in particular, the version with additive noise

ẋi = fi(x) + ηi. (2)

where ηi is a Gaussian white variable with variance 2T . In the limit of zero noise we have
a standard dynamical system and for a particular form of f a Hamiltonian system. Clearly,
an alternative way to study (2) is to go to the Fokker–Planck (or ‘Kramers’, or ‘Liouville’,
depending on the context) description of the evolution of the probabilities

Ṗ (x, t) = −HFPP(x, t) (3)

where

HFP ≡ − ∂

∂xi

(
T

∂

∂xi

− fi

)
. (4)

Here and in what follows summation of repeated indices is assumed, unless otherwise stated.
The Fokker–Planck operator acts on the space of functions of the coordinates x: it resembles
a Schrödinger operator, although it is in general non-Hermitian. The noiseless limit is subtle,
and is the subject of ergodic theory.

Introduce now two sets of fermion a
†
i , b

†
i and boson α

†
i , β

†
i creation operators (i =

1, . . . , N); and the corresponding vacuum, defined by

ai |−〉 = bi |−〉 = αi |−〉 = βi |−〉 = 0 ∀i. (5)

It will turn out that all the information we search for is obtained directly from the following
generalization of the Fokker–Planck operator,

HS = HFP − Vkl(x)
(
a
†
kal + b

†
kbl + α

†
kαl + β

†
kβl

)
Vkl(x) ≡ ∂fk

∂xl

. (6)

Here HS acts on the product space of functions of the coordinates and of the number of
fermions and bosons of each type. Clearly, HS coincides with HFP when restricted to the zero
fermion and boson subspace. This is the many-body system mentioned above.

If the xi are lattice variables, and the fi are short-range interactions, then the system (6)
defines a quantum (non-Hermitian) theory, also having short-range interactions. If the system
is instead off-lattice, the xi describe the positions of the particles and the (ai, bi, αi, βi) play
the role of ‘spin’ degrees of freedom carried by the quantum particles: if the fi are short range,
then both the direct and the spin–spin interaction are also short range.

An alternative strategy, that leads to the generalized Lyapunov exponents, is based on
replicas of fermions a

γ †
i , b

γ †
i with γ = 1, . . . , q and the operator

Hq = HFP − Vkl(x)
(
a

γ †
k a

γ

l + b
γ †
k b

γ

l

)
. (7)

The Lyapunov exponents are defined as follows: the separation of two infinitesimally
close trajectories evolving under the same noise (for a mathematical review see [3]) x(t) and
x(t) + y(t) is described by the evolution of vectors in the tangent space

yk(t) = Uki(x0, t)yi(0) (8)

where x0 is the initial condition and U is defined as the solution of the linear equation

U̇ki(t) = Vkj (x, t)Uji(t). (9)

The N Lyapunov exponents λi measure the rate of growth of the volume in the tangent space.
We construct

A(t) ≡ U(t)U †(t) (10)
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and consider its eigenvalues A1(t) � A2(t) · · · � AN(t) (a set per initial condition and/or
noise realization). The Lyapunov exponents are

λi ≡ lim
t→∞

1

2t
〈logAi〉. (11)

Throughout this paper averages 〈•〉 are over the noise and/or the initial condition. Note that
the λi are automatically labelled in decreasing order λ1 � λ2 � · · · � λN . Their existence has
been proved for dynamical systems by Oseledec [4] and his work has been extended to a very
large class of systems (see the introductory article of Arnold in [3] and the references therein).
One can in fact consider the generalized Lyapunov exponents λ

q

i of interest as a measure of
the intermittency (see Benzi et al [5]) defined, for example, as

λ
2q

i ≡ lim
t→∞

1

t
log〈(Ai )

q〉 (12)

(a more standard definition will be given below in (17)).
Adopting the nomenclature of disordered systems, we shall call the true Lyapunov

exponents ‘quenched’, and the q = 1, 2, . . . set the ‘annealed’ exponents. The quenched
exponents can be formally obtained as the analytic continuation q → 0 (the replica trick), but
we shall also consider a direct evaluation here.

Years ago, Graham [1] constructed a representation of the annealed Lyapunov exponents
using fermions valid for systems with one degree of freedom. Later, Gozzi and Reuter [2]
derived a generalization to several degrees of freedom. Their approach differs from ours in two
respects: first, their expression, if averaged over initial conditions or noise, yields the annealed
quantities. Second, and also important, they consider the eigenvalues of U rather than UU †,
a different (though potentially interesting) quantity. In the present treatment, we derive an
expression for the quenched exponents directly by introducing auxiliary fermions and bosons:
the technique of supersymmetry [6, 7]. We also give expressions for the generalized exponents
for even q. In all cases we consider the operator UU †, rather than U: this is the reason why
we need to introduce the fermions and bosons in pairs (ai, bi) and (αi, βi) (cf (6), (7)).

The present derivation is confined to continuous-time systems; it would need to be
modified in order to apply it to discrete maps. The presence of noise is an important ingredient
of our formalism, in that it provides a well-defined Hilbert space structure. The zero-noise
limit can be taken but brings in all the subtleties of ergodic theory.

Lyapunov exponents appear naturally in the context of localization problems for quantum
disordered systems: one considers exponents associated with the product of transfer matrices,
which play the role of evolution operators (see, e.g., [8, 9]). Thus, the Green-function
formalism has been treated with supersymmetric (SUSY) techniques to extract correlations
(see Balents and Fisher [10], where there is also a detailed analysis of the supersymmetry
group and representation, and Markoš [11] for a path-integral formalism). In these works
supersymmetry was used in order to obtain the Green function, and then the quenched quantities
were obtained via the replica trick.

The observation that certain quantities in the theory of deterministic dynamical
systems have a statistical-mechanical interpretation is also at the heart of the so-called
‘thermodynamical formalism’ [12]. The formalism we present here is not equivalent and
is more along the lines of the approach in [13] where the problem of computing the Lyapunov
exponents is mapped into a statistical-mechanical problem.

This paper is organized as follows. In section 2 we present the formalism for the expression
of usual and generalized Lyapunov exponents. For Hamiltonian systems we show (in section 3)
that the Lyapunov pairing rule follows trivially from a particle–hole symmetry. In section 4 we
discuss the statistical mechanics of Lyapunov exponents of macroscopic systems, in particular
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the existence of a Lyapunov density function. We then present two examples of application: in
section 5 to problems of random matrices, and in section 6 to a Hamiltonian mean-field model.

2. The formalism

2.1. Basic quantities

The average expansion of any p-dimensional volume evolving with (2) in the space of phases
can be expressed, in terms of U as

det
[(

ξ
†
i1
, . . . , ξ

†
ip

)†
[U †U ](x0, t)

(
ξi1 , . . . , ξip

)]
(13)

where ξi1, . . . , ξip is a set of p orthonormal vectors. Given that the spectrum of U †U is
generically the same as the spectrum of UU † the average expansion can be expressed as the
sum over all possible p-dimensional volumes

Rp(x0, t) =
∑

i1,...,ip

det
[(

ξ
†
i1
, . . . , ξ

†
ip

)†
[UU †](x0, t)

(
ξi1 , . . . , ξip

)]
. (14)

It is obvious that in long time limit this sum will be dominated by the sum of the largest
p eigenvalues of UU †. Introducing the cumulative Lyapunov exponents 	i as

	i ≡ λ1 + · · · + λi (15)

one has

	p = lim
t→∞

1

2t
〈ln Rp(x0, t)〉. (16)

Expression (16) is not suitable to be written as an integral of an exponential (a partition
function) because of the logarithm. This is the usual quenched versus annealed problem in
disordered systems: we are interested in the average of the logarithm and not the logarithm of
the average. Below we shall overcome it by means of supersymmetry, but we shall first also
give expressions for the annealed quantities.

The generalized Lyapunov exponents (see [5]) can be used to measure intermittency
(i.e. rare trajectories having unusual Lyapunov exponents) and are relevant quantities in the
thermodynamical formalism of chaotic systems. They are defined via the moments of the
Rp(x0, t)

	2q
p ≡ λ

2q

1 + · · · + λ2q
p = lim

t→∞
1

t
ln(〈Rp(x0, t)

q〉). (17)

To the extent that the moments 〈Rp(x0, t)
q〉 are sufficient to reconstruct the distribution law of

Rp(x0, t) and the averages for all real q, one can use them to find the quenched average (16).
In such cases the quenched quantities can be extracted from (17) using the replica trick:

	p = d	
q
p

dq
(q = 0). (18)

2.2. Generalized exponents

Let us first obtain an expression for the annealed exponents λ
2q

i for integer q. This calculation
is the closest to the construction of Gozzi and Reuter [2], with the important difference that
we consider the limit eigenvalues of the matrix A = UU † and not of U itself.

Introducing p pairs of fermions ai and bi one can write (see appendix A)

Rp(x0, t) = 〈−|ψpT
[

exp

(∫ t

0
H1(x(t ′)) dt ′

)]
ψ †

p|−〉 (19)



Statistical-mechanical formulation of Lyapunov exponents 10303

where T denotes time order and

H1(t) ≡ V (x)ij
(
a
†
i aj + b

†
i bj

)
ψp ≡ 1√

p!

∑
i1,...,ip

ai1 · · · aipbi1 · · · bip . (20)

The explicit time dependence of H1 is given by the evolution of x (2) via Vij (x). More
generally, one can write, in terms of q replicas of the set of fermions a

γ

i and b
γ

i

Rq
p(x0, t) = 〈−|ψq

pT
[

exp

(∫ t

0
H

q

1 (x(t ′)) dt ′
)]

ψq†
p |−〉 (21)

where

H
q

1 (t) ≡ V (x)ij
(
a

γ †
i a

γ

j + b
γ †
i b

γ

j

)
ψq

p ≡ 1√
p!

q∏
γ=1

∑
i1,...,ip

a
γ

i1
· · · aγ

ip
b

γ

i1
· · · bγ

ip
. (22)

This is not the final expression, since we have not yet imposed that x evolves according to the
equation of motion.

The use of two sets (a and b) of fermions is needed in order to follow the rate of growth
of the norm of vectors in the tangent space and not the evolution of the vectors themselves:
we are interested in the eigenvalues of U †U and not in those of U. This is obviously not a
problem in dimension 1 [1]. In dimensions larger than 1, Gozzi and Reuter [2] introduced
one family of fermions and thus studied the eigenvalues of U: these do not in general coincide
with the Lyapunov exponents (see [14, 15] for a discussion), although they surely give relevant
information. In section 5 we will explicitly show in an example how the a and b fermions
interfere in a non-trivial way.

We now write an expression for the average over noise and/or initial conditions of (21)
using the information that x(x0, t) evolves according to (2), and the probability density follows
(4). One way to do this is to express the weight of each trajectory as〈
Rq

p(x0, t)
〉 = 〈∫ P(x0) dx0Dx′δ(x′ − x(x0, η, t ′))

×〈−|ψq
p

[
exp

(∫ t

0
H

q

1 (x(t ′)) dt ′
)]

ψq†
p |−〉

〉
η

(23)

where Dx means the flat functional integral over trajectories, the delta-function imposes that
x(t) satisfies the equation of motion and P(x0) is the initial condition distribution. This
passage is just the standard textbook exercise of going from a Langevin to a Fokker–Planck
description (see, for example, [16]). The result is that the probability evolves through the
Fokker–Planck equation, and we have〈

Rq
p(x0, t)

〉 = 〈1| ⊗ 〈−|ψq
p [e−tHq ]|ψq†

p |−〉 ⊗ |P 〉 (24)

where Hq = HFP − H
q

1 is given in (7). The ket 〈1| is the flat measure 〈1|x〉 = 1 and
〈x|P 〉 = P(x). Note that the time ordering is automatic, as the evolution of x is taken care of
by HFP. In the limit t → ∞ the logarithm of

〈
R

q
p(x0, t)

〉
is given by the smallest eigenvalue of

Hq in the subspace having a non-zero overlap with the vectors 〈1|⊗ 〈−|ψq
p and ψ

q†
p |−〉⊗ |P 〉.

We can now describe a practical algorithm for computing the generalized Lyapunov
exponents. First we have to identify the smallest invariant subspace containing the states
appearing to the right and to the left of (24). Clearly, the fermion numbers N

γ
a = ∑i a

γ †
i a

γ

i

and N
γ

b =∑i b
γ †
i b

γ

i are conserved, and the calculation of
〈
R

q
p(x0, t)

〉
involves working in the

subspace N
γ

b = N
γ
a = p. Furthermore, because Hq and ψ

q
p commute with the operators Pγ

defined by

Pγ a
γ

i Pγ † = −b
γ

i Pγ b
γ

i Pγ † = a
γ

i (25)
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we should look into the subspace of eigenfunctions symmetric under exchange of a and b,
having eigenvalue one under the Pγ : this is where two families of fermions get mixed. Because
the quantity (24) is by construction positive, one can see that the eigenvalue having the smallest
real part within this subspace has zero imaginary part.

2.2.1. Variational calculations. A variational approach can immediately be implemented for
the calculation of the generalized (and, with an act of faith, the usual) Lyapunov exponents.
Since one is looking for the lowest eigenvalue of Hq within a given subspace, one can use a
variational trial function |ϕ〉 and make the variational estimation

	
2q

i ∼ min
ϕ

Re
〈ϕ|Hq |ϕ〉

〈ϕ|ϕ〉 . (26)

If the family of variational functions is parametrized for every i, q, one obtains an
approximation which is an explicit function of q: one can then envisage computing also
an approximation for the usual Lyapunov exponents via (17).

2.3. Ordinary (quenched) Lyapunov exponents

In this section, we construct an expression for the (quenched) Lyapunov exponents using a
supersymmetry formalism. For clarity, we shall do so in two steps: first a naive calculation
that does not take into account the convergence of the sums, but is closer to the standard
supersymmetry treatments in other contexts. Next, we use the Borel transform technique to
work more properly.

2.3.1. Careless calculation. We introduce a set of fermion and boson operators as in (5) and
(6), and define the number operators

Na = a
†
kak Nb = b

†
kbk Nα = α

†
kαk Nβ = β

†
kβk

Nbos = Nα + Nβ

2
Nfer = Na + Nb

2
N̄ = Nfer + Nbos

(27)

which will commute with all other operators. We shall also need

f ≡ a
†
kb

†
k f̄ ≡ α

†
kβ

†
k . (28)

Let us now introduce, for a given trajectory x(t), the quantity

HS
1 (t) = Vkl(x)

(
a
†
kal + b

†
kbl + α

†
kαl + β

†
kβl

)
. (29)

With this notation we compute Z(µ, µ̄) as

〈−| ef †+f̄
†
(
T exp

(∫
dt
(
HS

1 − µ̄Nbos − µNfer
))

(−1)Nbos

)
ef +f̄ |−〉 (30)

and one can easily show that (appendix B)

Z(µ, µ̄) = det[1 + e−µtA]

det[1 + e−µ̄tA]
(31)

where A(t) is associated with the trajectory x. This function will generate all the Lyapunov
exponents for the trajectory as

G(µ) ≡ − lim
t→∞

1

t

∂Z(µ, µ̄)

∂µ

∣∣∣∣
µ̄=µ

= lim
t→∞

N∑
j=1

e−µtAj

1 + e−µtAj

. (32)
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Then, for large t,G(µ) is a ladder with steps when µ equals 2λi (i.e. it is the integral of
the Lyapunov distribution function). Just as in the previous subsection, we wish to calculate
〈G(µ)〉. Again, this is directly done in the Fokker–Planck formalism by the quantity

〈G(µ)〉 ≡ − lim
t→∞

1

t

∂〈Z(µ, µ̄)〉
∂µ

∣∣∣∣
µ̄=µ

(33)

with

〈Z(µ, µ̄)〉 = 〈φL| exp(−t (HS + µNfer + µ̄Nbos))(−1)Nbos |φR〉 (34)

where HS = HFP − HS
1 is given in (6). The left and right eigenvectors are

|φR〉 = ef +f̄ |−〉 ⊗ |P 〉 〈φL| = 〈1| ⊗ 〈−| ef †+f̄
†
. (35)

We can also write 〈G(µ)〉 as an expectation value (see appendix C)

〈G(µ)〉 = 〈φL| e−t (HS+µN̄)Nfer(−1)Nbos |φR〉. (36)

Equation (31) can be expressed as a formal series in powers of exp(−tµ) and exp(−tµ̄).
This same series is reproduced by (30), or, in an averaged version, (34). Each term of the
form exp[−t (n1µ + n2µ̄)] corresponds to an expectation value in the subspace of n1 fermions
and n2 bosons. Clearly, (31) has a very small convergence radius: this is because the number
of bosons, unlike the number of fermions, is unlimited. In other words, expressions (31),
(30) and (34) have only a formal meaning. One can still work with them if at the end of
a derivation one can resum the series exactly, in which case one has in fact performed the
analytic continuation in µ and µ̄.

2.3.2. Borel transform. Let us now give a more proper construction of the quantity G(µ).
It will turn out that the formalism that emerges is not much more complicated than that in the
previous paragraphs. Briefly, the Borel transform technique consists in going from the formal
series

h(y) ∼ a0 + a1y + a2y
2 + · · · (37)

to its convergent transform

hB(y) = a0 +
a1

1!
y +

a2

2!
y2 + · · · (38)

which can then be inverted. In our case, we shall take

h(y) ∼ a0 + a1y + a2y
2 + · · · = det[1 + y e−µtA]

det[1 + y e−µ̄tA]
(39)

(cf (31)), and define as the Borel-transformed partition function

ZB(µ, µ̄) = hB(y)|y=1 (40)

that is, we are dividing by (n1 + n2)! the term having n1 fermions and n2 bosons. Repeating
the construction above, it is easy to see that

〈ZB(µ, µ̄)〉 = 〈φB
L

∣∣ exp(−t (HS + µNfer + µ̄Nbos))(−1)Nbos
∣∣φB

R

〉
(41)

which is just like (34) except that the left and right eigenvectors are∣∣φB
R

〉 = g(f + f̄ )|−〉 ⊗ |P 〉 〈
φB

L

∣∣ = 〈1| ⊗ 〈−|g(f † + f̄
†
) (42)

where the function g(x) is

g(x) =
∞∑

n=0

xn

n!
√

n!
. (43)
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We can now define as before

〈GB(µ)〉 ≡ − lim
t→∞

1

t

∂〈ZB(µ, µ̄)〉
∂µ

∣∣∣∣
µ̄=µ

(44)

which we can also write as an expectation value

〈GB(µ)〉 = 〈φB
L

∣∣ e−t{HS+µN̄}Nfer(−1)Nbos
∣∣φB

R

〉
. (45)

Interestingly enough, we can retrieve the information directly (without the need to
antitransform) from GB(µ), since one can show (appendix C) that

GB(µ) =
N∑

j=1

θ(2λj − µ) (46)

again gives the same ladder function.

2.3.3. Supersymmetry. The Hamiltonian HS is invariant under all the (supersymmetric)
transformations rotating simultaneously the αi, βi, ai, bi so as to leave the quadratic form
f + f̄ and the fermion–boson part of HS invariant. Then, expectation values can be written in
the standard form

〈O〉 = Tr[(−1)Nfer CO] (47)

with C supersymmetric,

C ≡ exp(−t[HS + (µ + iπ)(Nfer + Nbos)])
∣∣φB

R

〉〈
φB

L

∣∣. (48)

Both the original and the Borel-transformed versions have the same symmetries.
One can show that supersymmetry is responsible for the fact that Z(µ,µ) and ZB(µ,µ)

are independent of µ: the constancy of the normalization is indeed the underlying reason why
we can use the method to obtain quenched averages (see Balents and Fisher [10] for a detailed
discussion of the supersymmetry group and representations).

2.4. Discussion

The calculation of generalized exponents λ
2q

i is done, as we have seen, by computing the lowest
eigenvalue within a subspace of the Hilbert space. This is because the large t limit automatically
projects onto the corresponding eigenstate. Approximate and numerical methods for the
estimation of the ground state of Schrödinger-like operators abound in the literature, we have
already mentioned the variational principle.

If one wishes to extend these results for the quenched exponents, an analytic continuation
to q → 0 is needed. This is easily done (although with a leap of faith) when an explicit
expression for all even q is available. Such will be the case in a variational, a perturbative or
a mean-field computation.

On the other hand, the supersymmetry method yields the Lyapunov exponents without
the need of any continuation. However, there is a price to pay: expressions (36) and (45)
involve a sum of terms within subspaces of any number of bosons. In the Borel-transformed
version (45) this sum is convergent for all finite t. However, one can see that the largest term
corresponds to a boson number of the order of exp(λ1t), and this number grows as we consider
larger times. In other words, we can only perform this sum for finite t, and only then make
t → ∞. Again, this is no problem if an analytic expression is available (perhaps as a result of
an approximation), but it does seem problematic to attack a problem numerically this way.
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3. Symmetries: pairing rule for (quasi-)Hamiltonian systems

Damped Hamiltonian systems are a particular case of the dynamics (2), which can be written
as

q̇ i = ∂H
∂pi

ṗi = −∂H
∂qi

− γpi +
√

γ ηi (49)

where γ measures the intensity of the coupling to the bath. The quasi-symplectic structure of
Hamilton’s equations has consequences.

One of the proprieties we can easily infer from our formulation is the pairing rule for the
Lyapunov spectrum. This pairing rule was proved for the dynamical systems defined in (49)
but without noise (named ‘quasi-Hamiltonian’ by Dressler [17]); in our formalism it is the
result of a particle–hole symmetry. This is most easily seen for the annealed exponents. In
the case

H =
N∑
i

p2
i

2
+ V(q) (50)

the Vij (9) read

V =
(

0 1

− ∂2V
∂qi∂qj

−γ 1

)
(51)

(here and in what follows 0 and 1 are the null matrix and the identity matrix in the N × N

space). Denoting xi = qi for (i = 1, . . . , N) and xi = pi for (i = N + 1, . . . , 2N) and
introducing the fermions a

γ

i , b
γ

i we can compute the moments 〈Rp(x0, t)
q〉, 1 � p � 2N , and

obtain all the 2N annealed Lyapunov exponents.
We consider the transformations

ā
γ †
i = εij a

γ

j b̄
γ †
i = εij b

γ

j (52)

where

ε =
(

0 −1
1 0

)
. (53)

We obtain a new set of fermions and we can construct new quantities as in (22), H̄ q and ψ̄p|0̄〉;
they will be linked to the unbarred quantities by

H̄ q = Hq − 2qγ (N − Nfer) (54)

ψ̄p|0̄〉 = Kpψ2N−p|0〉 (55)

(where Kp is a constant not depending on time). Both barred and unbarred quantities can be
used to compute the generalized Lyapunov exponents and we have the additional equality

〈R̄p(x0, t)
q〉 = 〈K2

p e(N−p)2qγ R2N−p(x0, t)
q
〉
. (56)

This particle–hole symmetry, a consequence of the symplectic structure of the evolution
operator, was noted by Gozzi and Reuter [2]. One then gets

	2q
p = 	

2q

2N−p + (N − p)2qγ (57)

which in terms of the individual exponents becomes

λ2q
n = −2qγ − λ

2q

2N−n+1. (58)

Using (18) and (15) we can infer that the Lyapunov exponents are symmetric around − γ

2 .
Note that this result holds for arbitrary ηi(t), and not only in the case in which it is a white
noise.
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4. Macroscopic systems

An active field of research is the information that Lyapunov exponents can provide in extensive
systems in the thermodynamic limit. The natural object to study is the Lyapunov density
function

ρ(µ) ≡
N∑

i=1

δ(λi − µ) (59)

or, better, the cumulative version

C(µ) ≡
∫ ∞

µ

ρ(λ) dλ. (60)

These quantities, along with the generalized Lyapunov exponents (17), often appear
in the context of the so-called thermodynamical formalism [12]; in particular C(0) is the
sum of positive exponents, related to the Kolmogorov–Sinai (KS) entropy through the Pesin
(in)equality. Let us emphasize again that our statistical-mechanical formalism provides a
tool to compute and study relevant quantities and not an alternative formulation for the
thermodynamic formalism.

The existence of a thermodynamic limit for the Lyapunov densities (or for the greatest
Lyapunov exponent) has been conjectured by several authors [18, 19] (see also [20]). A
problem immediately arises: the Lyapunov exponents are themselves the result of the limit
t → ∞ and the question as to whether this and the thermodynamic limit commute is not
obvious. Typical examples when they do not are when there are macroscopic motions that
take times diverging with the size. We shall find a clear example in the Hamiltonian mean-
field model below (section 6): the particles organize in an anisotropic object which can turn
collectively like a rotor. In contact with a bath there is diffusion of the collective angle, but,
since the moment of inertia scales with N, collective motion is absent if we consider N → ∞
before t → ∞. Sinai [21] has shown that in this last order of limits the densities are well
defined in a system of confined particles with pairwise interactions: we shall see that this
result is very natural.

In the previous sections, we have shown that C(µ) is the large time limit of Ct(µ) with

Ct(µ) = GB(2µ, t) = 1

2t

∂ ln ZB(2µ, 2µ̄, t)

∂µ

∣∣∣∣
µ=µ̄

(61)

(the logarithm in the rhs has no effect, since the normalization is one).
Consider this expression: ZB is a partition function associated with the ‘quantum’

Hamiltonian HS , where the time plays the role of an inverse temperature, µ that of a chemical
potential and Ct(µ) that of the derivative of a free energy density with respect to the chemical
potential (i.e. a particle number per unit volume). The Lyapunov density is hence a form of
compressibility.

As mentioned in the introduction, if the original problem is on a lattice and has nearest
neighbour interactions, the fermions and bosons are also lattice variables interacting with the
nearest neighbour variables (through Vij ). We have then a ‘quantum’ lattice problem with
short-range interactions. On the other hand, the system could be off-lattice, and the xi be a
set of d-dimensional vectors describing the position of the particles interacting via short-range
pair forces fi(x) =∑j f (xi −xj ). The variables (ai, bi, αi, βi) play the role of ‘spin’ degrees
of freedom carried by quantum particles, both the direct and the spin–spin interaction are also
short range.

All in all, we are asking whether a quantum theory with short-range interactions has
a good thermodynamic limit with a well-defined free energy density. There is only one
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non-standard feature if we ask for the t → ∞ taken before the thermodynamic limit: this is,
as we have seen, like asking in a statistical-mechanical problem about the zero temperature
limit taken before the thermodynamic limit—sometimes a tricky question.

The arguments on extensivity become more subtle if we wish to study the thermodynamic
limit of the largest Lyapunov exponent: this is like asking in a particle system not what is
the chemical potential needed to create a certain particle density, but rather to create a single
particle in the whole system: clearly this is a question of order O(1/N). We shall return to
this point in section 6.

An interesting special case is the behaviour of the Lyapunov exponents close to zero in
a system with soft modes. In the present context this concerns the properties of a statistical-
mechanic problem around µ = 0, i.e. free from external chemical potential. For example,
from (36) we have

〈ρ(λ = 0)〉 = 〈φB
L

∣∣ e−tHS Nfer
(Nfer + Nbos)

2

∣∣φB
R

〉
. (62)

A very intriguing possibility that immediately comes to mind when working in the present
framework is that of studying universality properties at critical points using renormalization-
group ideas and techniques.

5. Random matrices

As explained in [15] the asymptotics of many systems, from neural networks in the
thermodynamical limit [20] to localization problems in disordered conductors [8], are often
modelled by products of random matrices.

In this section, we use our formalism to derive some results already obtained for some
random matrix models. For brevity we shall only do this in the pure fermion (annealed) case,
although the supersymmetric approach can also be applied.

The main lesson we shall obtain is that these systems become, by virtue of the disorder,
interacting fermion problems. As such, they can be very well attacked by some of the many
methods devised for such cases: Feynman diagrams of course, but also a resummation such
as Hartree–Fock.

5.1. Weak disorder expansion

The first model where we can show the power of our approach is that proposed by Derrida
et al [8]. They study the weak disorder expansion of the quenched Lyapunov exponents for a
product of the form

P =
∏

t

Ut Ut = B0 + εB (63)

where B0 is a fixed matrix, B is a random matrix, and ε is a small parameter. We shall study
the case with B a multi-dimensional, Gaussian white noise, with zero mean (as the finite mean
can be safely included in the constant matrix)

〈Bij (t)〉 = 0 〈Bij (t1)Bkl(t2)〉 = 〈BijBkl〉δ(t1 − t2). (64)

Following Derrida we study the case with the matrix B0 having non-degenerate, well-separated
eigenvalues ε1 > ε2 > · · · > εN .

The first step in order to use our formalism is the set-up of a continuous-time variant of
the problem

U(dt) = 1 + B0 dt + εB dt. (65)
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Next, we exponentiate this expression. Due to the non-continuous character of the random
term B the correct form of the exponential is

U(dt) = exp

(
B0 dt + εB dt − ε2

2
〈B2〉 dt

)
. (66)

This means that the evolution of U will be given by (as in (9))

Vij (t) = B0ij + εBij (t) − ε2

2
〈BikBkj 〉. (67)

We can now derive the path-integral form of R
q
p as

1

p!
〈−|

q∏
γ=1

a
γ

i1
· · · aγ

ip
b

γ

i1
· · · bγ

ip

∣∣∣∣T exp

(
−
∫

dtH

)∣∣∣∣
q∏

γ=1

a
γ †
l1

· · · aγ †
lp

b
γ †
l1

· · · bγ †
lp

|−〉 (68)

(γ is the replica index going from 1 to q). We used as a Hamiltonian

H = Vij (x)
(
a

γ †
i a

γ

j + b
γ †
i b

γ

j

)
. (69)

The average
〈
R

q
p

〉
will be expressed by integrating the Gaussian noise Bij in (68) which will

transform H into

H ′ = H0 + ε2HI (70)

H0 = B0ii

(
a

γ †
i a

γ

i + b
γ †
i b

γ

i

)
(71)

HI = 〈BmnBij 〉
2

(
a

γ †
i aγ ′†

m aγ ′
n a

γ

j + +b
γ †
i bγ ′†

m bγ ′
n b

γ

j + a
γ †
i bγ ′†

m bγ ′
n a

γ

j

)
. (72)

We have used the fact that we can diagonalize B0 and work on that base (which will not change
the fermionic states). We have also arranged the creators and the annihilators of fermions
in normal form. Expression (72) can be proved to be the correct one by going back to the
Suzuki–Trotter product, performing the averages there, and then reconstructing the continuous
version. We are now in the possession of a time-independent Hamiltonian. Note that after
integration of the noise we get a non-trivial result only because of the presence of two types
of fermions: without them we would have lost the higher moments of the noise.

Now we can carry on the program presented in section 2.2. The replica trick is easy
to implement for perturbation expansions, since these yield an explicit dependence as a
polynomial in q of each term of the expansion.

We want the pth cumulative Lyapunov exponent, so, as seen from (22) we work in the
sector with p fermions of each type and q replicas. First, the ground state of H0 is

ψ0 =
q∏
γ

p∏
i

a
γ

i b
γ

i (73)

and the corresponding eigenvalue

2q

p∑
i

εi . (74)

It is easy to see that ψ0 has a finite overlap with the fermionic states in (22) and this will
remain true for the perturbed ground states.

The first non-zero order in ε is in ε2; in order to compute it we must use first-order
perturbation theory to obtain

〈ψ0|HI

∣∣ψ †
0

〉 = −q〈BijBji〉 +
3q2

2
〈BiiBjj 〉. (75)
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For the second-order perturbation theory (which will give the contribution in ε2) we must
identify the states connected by the perturbation (see appendix D). We can now retain the
terms linear in q, and hence obtain the quenched average (the coefficients of the linear term
(see (17))

	p =
p∑

i=1

εi − ε2

2

p∑
i=1

p∑
j=1

〈BijBji〉 + ε4
p∑

i=1

p∑
j=1

p∑
l=1

∑
m>p

〈BijBmi〉〈BjlBlm〉
εj − εm

− ε4

2

p∑
i=1

p∑
j=1

N∑
m>p

N∑
n>p

〈BimBjn〉〈BmiBnj 〉
εj + εi − εm − εn

. (76)

This expansion is the continuous-time, Gaussian white noise equivalent of the expression
obtained in [8].

5.2. Random symplectic matrices

Another model that can be revisited is the random matrix model introduced by Parisi and
Vulpiani [22] (see also [15] and [23]) in order to mimic some systems that show strong chaos.
A continuous-time version of this model, in the case of only one spatial degree of freedom, is
a linearized evolution of the form

V (t) =
(

0 1
η(t) 0

)
(77)

where η is a Gaussian noise with a mean r and a deviation σ .
Using this definition we can compute the average〈

R
q

1 (t)
〉 = ∫ P(η) dη〈ψq |T

[
exp

(∫ t

0
H(η(t ′)) dt ′

)] ∣∣ψq†
1

〉
(78)

where

ψ
q

1 =
q∏

γ=1

(
aγ

q bγ
q + aγ

pbq
p

)
(79)

and

H =
q∑

γ=1

(
aγ †

q aγ
p + bγ †

q bγ
p

)
+ η(t)

q∑
γ=1

(
aγ †

p aγ
q + bγ †

p bγ
q

)
. (80)

This Hamiltonian form of the exponential quantities associated with the Lyapunov exponents
can be checked to be true using small-time developments in the Suzuki–Trotter formula, just
as in the previous section. We can integrate the noise in (78) and obtain〈

R(t)
q

1

〉 = 〈ψq

1

∣∣ etH ′ ∣∣ψq†
1

〉
(81)

where the averaged Hamiltonian can again be checked in the discretized version

H ′ =
q∑

γ=1

(
aγ †

q aγ
p + bγ †

q bγ
p

)
+ r

q∑
γ=1

(
aγ †

p aγ
q + bγ †

p bγ
q

)
+

σ 2

2


 q∑

γ=1

(
aγ †

p aγ
q + bγ †

p bγ
q

)
2

. (82)

In order to compute the generalized Lyapunov exponent λ
2q

1 we must diagonalize this
Hamiltonian on the 3q-dimensional basis

aγ †
p bγ †

p aγ †
q bγ †

q

1√
2

(
aγ †

p bγ †
q + aγ †

q bγ †
p

)
(83)

which spans the maximum closed subspace containing the states (79).
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Let us note here that the Hamiltonian (82) for the case q = 1, on the basis (83) is given
by the matrix 

 0 0
√

2

σ 2 0
√

2r√
2r

√
2 0


 (84)

essentially the same used by Anteneodo and Vallejos [23, 24] to compute λ2
1.

We make a redefinition of the fermions as [25]

aq → t1aq a†
q → a

†
q

t1
ap → t2ap a†

p → a
†
p

t2
. (85)

Let us concentrate on the zero-mean noise (r = 0). With

t1

t2
= (σ 2)

1
3 (86)

the Hamiltonian (82) becomes

H ′ → (σ 2)
1
3


 q∑

γ=1

(
aγ †

q aγ
p + bγ †

q bγ
p

)
+

1

2


 q∑

γ=1

(
aγ †

p aγ
q + bγ †

p bγ
q

)
2

 . (87)

Now the σ dependence of the greatest Lyapunov exponent is clear: at any strength of the
zero-mean noise λ

2q

1 = c(2q)σ
2
3 . This dependence will remain the same for the quenched

Lyapunov exponent

λ1 = cσ
2
3 c = 1

2

dc(q)

dq

∣∣∣∣
q=0

(88)

as seen from numerical simulations (see figure 1).
We were not able to compute an analytical expression for c(2q). For small q it is easy to

diagonalize H: for q = 1 we obtain λ2
1 = (2σ 2)

1
3 and going to q = 2 gives the possibility of

obtaining a quadratic approximation and, with the replica trick, a better estimation of c (see
figure 1).

Let us now turn to the case in which the noise has positive average. We can transform
(82) using transformations (85) with

t1

t2
= √

r. (89)

The Hamiltonian becomes H ′ = √
rH ′′ with

H ′′ =
q∑

γ=1

(
aγ †

q aγ
p + bγ †

q bγ
p

)
+

q∑
γ=1

(
aγ †

p aγ
q + bγ †

p bγ
q

)
+ s2


 q∑

γ=1

(
aγ †

p aγ
q + bγ †

p bγ
q

)
2

(90)

where s2 = σ 2

r3/2 . There is a crossover (Lima and Rahibe [26]) in the Lyapunov exponent
dependence between the limits of small and large s (see figure 1).

Finally, let us give an example of the role played by spatial structures. We consider a
N-dimensional system with a noise η(t) (77)) which will now be a symmetric, random, N ×N

matrix with correlations depending on the distance between ‘sites’ i and j :

〈ηij (t)〉 = 0 〈ηij (t)ηkl(t
′)〉 = γ 2(|i − j |)(δikδjl + δilδjk)δ(t − t ′). (91)
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Figure 1. The greatest Lyapunov exponent versus the strength of the noise for a symplectic random

matrix (the mean of the noise is 1). At s � 1 a replica approximation and a power law fit (s
2
3 )

are presented. The dot-dashed line is the annealed Lyapunov exponent (
λ2

1
2 ) while the dashed

line is the approximation based on the first and the second generalized Lyapunov exponents. The
straight line is the low s perturbative expansion (see appendix E); the inset shows the check of the
expansion against the numerical data.

We shall compute the annealed Lyapunov exponent
(
λ2

1

)
. The Hamiltonian is

H =
N∑

l=1

(
a†

ql
apl

+ b†
ql
bpl

)
+

N∑
l,m=1

ηlm

(
a†

pl
aqm

+ b†
pl

bqm

)
. (92)

After averaging it becomes

H ′ =
N∑

l=1

(
a†

ql
apl

+ b†
ql
bpl

)
+

N∑
k �=l=1

γ 2(|l − k|)
2

(
a†

pl
aqk

+ b†
pl

bqk
+ a†

pk
aql

+ b†
pk

bql

)2

+
N∑

l=1

γ 2(0)
(
a†

pl
aql

+ b†
pl

bql

)2
. (93)

The system becomes explicitly translational invariant. We have to diagonalize this Hamiltonian
on the states

1√
N

N∑
l=1

a†
ql
b†

ql

1√
N

N∑
l=1

a†
pl

b†
pl

1√
2N

N∑
l=1

(
a†

ql
b†

pl
+ a†

pl
b†

ql

)
(94)

where N is the total number of sites. Within this subspace, H ′ is given by the matrix (84) with
r = 0 and

σ 2 = N

(∑
i=1

γ 2(i) + 2γ 2(0)

)
= N

N∑
j=1

〈ηijηij 〉. (95)

With this definition of σ , λ2
1 = (2σ 2)

1
3 and this is the result obtained in [22].
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6. Hamiltonian mean-field system

The Hamiltonian mean-field system we consider [27] is composed of N coupled rotators with
a classical Hamiltonian

H =
N∑
i

p2
i

2
+

J

N

∑
i,j

[1 − cos(qi − qj )]. (96)

The normalization of the coupling ensures an extensive free energy. This system has (in
the canonical ensemble) a phase transition at Tc = 0.5J between a ferromagnetic and a
paramagnetic phase [27–29].

The equations of motion are, if we allow for noise and dissipation

dqi

dt
= pi

(97)
dpi

dt
= −JMx sin qi + JMy cos qi − γpi +

√
2γ T ηi

where we have introduced

Mx ≡ 1

N

∑
i

cos qi My ≡ 1

N

∑
i

sin qi. (98)

The matrix Vij governing the evolution operator in tangent space is

V =
(

0 1
−E −γ 1

)
(99)

with

Eij = − J

N
cos(qi − qj ) ∀i �= j

(100)
Eii = J

N

∑
i

cos(qi − qj ) − J

N
= JMx cos qi + JMy sin qi − J

N
.

We can now use the function defined in (30) in order to compute the Lyapunov spectrum. The
supersymmetry Hamiltonian becomes a sum of single particle terms

HS =
∑

i

H
(i)
S (101)

where the one particle Hamiltonian is

H
(i)
S ≡ ∂

∂pi

[JMx sin qi − JMy cos qi − γpi]

+ T γ
∂2

∂p2
i

− pi

∂

∂qi

− Jνl†
qi
νl

pi
− νl†

pi
νl

qi
+ γ νl†

pi
νl

pi

+ J (Mx cos qi + My sin qi)ν
l†
pi

νl
qi

− Jνl†
pi

cos qiCl − Jνl†
pi

sin qiS l (102)

(here no summation over i is implied). For compactness we have defined νl for l = 1, 2, 3, 4
as

νl
qi

≡ (aqi
, bqi

, αqi
, βqi

)
νl

pi
≡ (api

, bpi
, αpi

, βpi

)
(103)

and the collective operators:

Cl ≡ 1

N

∑
i

νl
qi

cos qi S l ≡ 1

N

∑
i

νl
qi

sin qi. (104)
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Not surprisingly, the operator HS is a mean-field (quantum) operator itself, and we can solve
the problem with any of the usual methods. For example, introducing explicitly the collective
variables using the functional delta-functions∫

D[Mx]δ

(
NMx −

∑
i

cos qi

)
=
∫

D[Mx]D[M̂x] exp

(
−M̂x

(
NMx −

∑
i

cos qi

))

(105)

∫
D[My]δ

(
NMy −

∑
i

sin qi

)
=
∫

D[My]D[M̂y] exp

(
−M̂y

(
NMy −

∑
i

sin qi

))

(106)

∫
D[Cl]δ

(
NCl −

∑
i

νl
qi

cos qi

)
=
∫

D[Cl]D[Ĉl] exp

(
−Ĉl

(
NCl −

∑
i

νl
qi

cos qi

))

(107)

∫
D[S l]δ

(
NS l −

∑
i

νl
qi

sin qi

)
=
∫

D[S l]D[Ŝ l] exp

(
−Ŝ l

(
NS l −

∑
i

νl
qi

sin qi

))

(108)

we can write

〈Z(µ, µ̄)〉 =
∫

D[Mx]D[M̂x]
∏

l

D[Cl]D[Ĉl]D[S l]D[Ŝ l]

× exp

(
−N

(∫
dt (M̂xMx + M̂yMy + ĈlCl + Ŝ lS l) − W

))
(109)

where W is the action for a single pair of variables (qi, pi) and can be written as the average

eW = 〈φ(i)
L

∣∣ exp
(−t
(
H

(i)
eff + µN

(i)
fer + µ̄N

(i)
bos

))
(−1)N

(i)
bos
∣∣φ(i)

R

〉
(110)

(no summation on i).
The left and right eigenvectors (for one particle i) are∣∣φ(i)

R

〉 = exp(f (i)† + f̄
(i)†

)|−〉 ⊗ |P (i)〉 〈
φ

(i)
L

∣∣ = 〈1| ⊗ 〈−| exp(f (i) + f̄ (i)) (111)

where for simplicity we have assumed that all pairs of variables (qi, pi) have the same initial
distribution, and hence left and right vectors are in product form. From now on we drop
the particle index i each time we describe only one particle. The single particle effective
Hamiltonian

(
H

(1)
eff

)
equals

H
(1)
S − M̂x cos q − M̂y sin q − Ĉlνl

q cos q − Ŝ lνl
q sin q (112)

which has, in principle, a time dependence through the collective variables. We wish to
evaluate 〈Z(µ,µ′)〉 by the saddle-point method in the thermodynamical limit. The saddle-
point equations for the ordinary collective variables read

M̂x = ∂W

∂Mx

Mx = ∂W

∂M̂x

M̂y = ∂W

∂My

My = ∂W

∂M̂y

. (113)

We also have saddle-point equations for the 16 fermionic and bosonic collective variables
Ĉl , Cl , Ŝ l ,S l .
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We have 20 equations of type (113) which we can solve assuming that the system is
at t = 0 already in thermodynamic equilibrium—the vector to the right in (110) is Gibbs-
distributed. This implies that the collective variables may be constant in time, an assumption
we verify later. First of all, it is easy to see that the saddle-point values of the Ĉl , Cl , Ŝ l and S l

vanish (appendix F). Next, one can see that if the endpoint of the trajectories is left free (i.e.
we are not conditioning to a specific arrival point), then causality implies that M̂x = M̂y = 0
(appendix F). Under these assumptions, the only variables with non-zero saddle-point values
are

Mx = 〈cos q〉M My = 〈sin q〉M (114)

where the average 〈•〉M is taken with the single particle dynamics

dq

dt
= p

dp

dt
= −JM sin q − γp +

√
2γ T η. (115)

Indeed, this yields the equilibrium value of M, as a solution of the equation

M = I1(y)

I0(y)
y = MJ

T
(116)

(where I are the Bessel functions, see [27]). What we have shown is that the Lyapunov density
function of the system is, to leading order in N, the sum of Lyapunov densities for a single
particle system moving according to (115). In the limit of zero coupling to the bath γ = 0 the
exponents for a single particle are zero, as a consequence of conservation of energy and the
pairing rule. In conclusion, in the thermodynamical limit the function G(µ) is a step of height
∼2N at zero.

Note that the fact that the energy of each particle is conserved separately is an artefact of
the large N limit: there is a coupling between the fluctuations at the following order in 1/N .
On the other hand we have assumed that the equilibrium distribution is already established,
even though this takes times that diverge with N.

A vanishing largest Lyapunov exponent λ1 has already been obtained both numerically
[28, 29] and analytically [24, 30] in the paramagnetic phase, but not in the ferromagnetic
phase. This is not in contradiction with our results: according to our calculation one can
still have a vanishing fraction of non-zero Lyapunov exponents, that do not contribute to the
density function in the large N limit. If we wish to calculate the largest exponent λ1 we should
take our calculation to the next order.

Figure 2 shows a numerical calculation of the spectrum of Lyapunov exponents for various
values of the number of particles N. The simulations are carried out in the microcanonical
ensemble at an energy where the greatest Lyapunov exponent does not show important variation
with N (the total energy E = 0.3, see [28]). Even though the computer time requirements
do not allow us to get close to the thermodynamical limit, these numerical results show a
reasonably good agreement with the hypothesis of a step spectrum.

At finite γ the Lyapunov distribution function is no longer a step, even in the
thermodynamic limit. We can obtain it very easily by solving the one particle system (115)
numerically. The results depend strongly on γ ; there is a scaling law in γ 1/3 below the critical
temperature and an identical zero λ1 in the paramagnetic phase (see figure 3).

Surprisingly, after rescaling the largest Lyapunov exponent for the one particle system
(115) behaves very much like the Lyapunov exponent computed by Firpo [30] in the canonical
ensemble. There are also qualitative and quantitative resemblances with the greatest Lyapunov
exponent obtained in microcanonical simulations of a large (but obviously finite) number of
particles (see [28, 29]). We can conclude that, at finite γ , G(µ) should have two sigmoids of
height ∼N located symmetrically around zero.
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Figure 2. The microcanonical Lyapunov spectra of the Hamiltonian mean-field system with N
particles at the total energy E = 0.3 presented as G(2µ)
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by the pairing rule.
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point (for J = 1) and the Lyapunov exponent is automatically zero above this point. The exponents

are scaled with γ
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7. Conclusions

Writing the Lyapunov exponents as a statistical-mechanics object provides a different
perspective of the problem, allowing us to transpose much of the knowledge and intuition
developed in that wider context.

Perhaps the most clear examples are the questions related to the thermodynamic limit.
We have seen that the existence of a limit Lyapunov density function is the kind of extensivity
property that most theoretical physicists would accept without proof—at least for the times
that do not diverge with the system size.

As to the different approximation schemes, a case in question is the continuous product
of random matrices studied in section 5. We have seen there that the problem is mapped
into a system of interacting fermions. We have treated it as a perturbative expansion of
weak interaction reobtaining the results presented in [8]. However, once in the language of
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interacting particles, one immediately thinks of other, more global approximations; we have
already mentioned Hartree–Fock, which can easily be implemented both in the pure fermion
or in the supersymmetric formalism. Similarly, the standard mean-field treatment of the model
of section 6 can be extended for the calculation of the exponents. This also suggests that it
may be interesting in general to construct a local mean-field approximation for problems with
space: this could give a simple analytic handle on the spatial structures involved with each
exponent.

A question into which we have not looked in detail is intermittency. The generating
function of generalized Lyapunov exponents λ

2q

i involves a distribution function in space that
depends on q. Physically, this arises because we are conditioning the probability of a trajectory
to have an unusual value of the exponents. Hence, studying the lowest eigenvector of Hq gives
us information on the spatial structures responsible for intermittent behaviour.

Yet another interesting question is to look at systems at or near criticality, and borrow
methods and ideas from the rich theory of critical phenomena to infer results on the behaviour
of the exponents there.
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Appendix A

In this appendix we show how, using fermions, the quantity R defined in (14) can be written
as a certain matrix element of the Hamiltonian (20) (equation (19)).

Let a
†
i be a set of fermion operators[

ai, a
†
j

]
+ = δij (A.1)

and we can encode (14) by writing

O(t) = a
†
kyk(t). (A.2)

We put

Ȯ(t) = [Vkla
†
kal,O(t)

]
−. (A.3)

It is easy to check that the yi then satisfy (8). The solution to (A.3) is

O(t) =
(
T exp

(∫
dtVkla

†
kal

))
O(0)

(
T exp

(∫
dtVk′l′a

†
k′al′

))−1

(A.4)

which implies (
T exp

(∫
dtVkla

†
kal

))
a
†
i

(
T exp

(∫
dtVk′l′a

†
k′al′

))−1

= Ujia
†
j . (A.5)

Let us now add a second set of fermions b
†
k , and construct the operator

f ≡ a
†
kb

†
k (A.6)

which will evolve in time as

UjiUria
†
j b

†
r =

(
T exp

(∫
dtVkl

(
a
†
kal + b

†
kbl

)))
f

(
T exp

(∫
dtVk′l′

(
a
†
k′al′ + b

†
k′bl′
)))−1

(A.7)
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(note that the same constructions can be made with bosons instead of fermions). Denoting
|−〉 the fermion vacuum, (A.7) implies

〈−|ai1 · · · aipbi1 · · · bip

∣∣∣∣T
[

exp

(∫
dtVij

(
a
†
i aj + b

†
i bj

))]∣∣∣∣ a†
l1

· · · a†
lp
b
†
l1

· · · b†
lp
|−〉

= Uk1l1 · · · UkplpUj1l1 · · · Ujplp 〈−|ai1 · · · aipa
†
k1

· · · a†
kp

|−〉
× 〈−|bi1 · · · bipb

†
j1

· · · b†
jp

|−〉 (A.8)

(this equality is true even if we do not sum over i1, . . . , ip and l1, . . . , lp).
Summing now over l1, . . . , lp we have

Uk1l1Uj1l1 · · · UkplpUjplp = (UU †)k1j1 · · · (UU †)kpjp
. (A.9)

Denoting with σ((j1, . . . , jp) → (k1, . . . , kp)) the signature of the permutation between
the two sets of indices when each set contains p different indices and the two sets are identical
to a permutation, and zero otherwise, we can write

〈−|ai1 · · · aipa
†
k1

· · · a†
kp

|−〉 = σ((i1, . . . , ip) → (k1, . . . , kp)) (A.10)

which will give

〈−|ai1 · · · aipa
†
k1

· · · a†
kp

|−〉〈−|bi1 · · · bipb
†
j1

· · · b†
jp

|−〉 = p!σ((j1, . . . , jp) → (k1, . . . , kp)).

(A.11)

Using (A.9) (A.8) and the properties of the signature it follows that (A.8) equals

(p!)
∑

j1,k1,...,jp,kp

Aj1k1 · · · Ajnkp
σ ((j1, . . . , jp) → (k1, . . . , kp)) (A.12)

(remember that A = UU †). After summing on k1, . . . , kp expression (A.12) is, by the
definition of the determinant,

(p!)
∑

j1,...,jp

det
[(

ξ
†
j1
, . . . , ξ

†
jp

)†
[UU †]

(
ξj1 , . . . , ξjp

)]
. (A.13)

Appendix B

In this appendix, we derive formula (30). Denoting by |−〉 the fermion vacuum, (A.7) implies(
T exp

(∫
dtVkl

(
a
†
kal + b

†
kbl

)))
ef |−〉 = eAjra

†
j b

†
r |−〉 (B.1)

and

〈−| ef †
(
T exp

(∫
dtVkl(a

†
kal + b

†
kbl) − µNfert

))
ef |−〉 = 〈−| ebiai e−tµNfer eAjra

†
j b

†
r |−〉

= det[1 + e−µtA]. (B.2)

The last equality is most easily checked by performing a rotation of the fermions to diagonalize
A. Then we have

〈−| ebiai e−µNfert eAjra
†
j b

†
r |−〉 = 〈−| eb∗

i a
∗
i e−µt

eAj a
∗†
j b

∗†
j |−〉 =

∏
k

〈−| eb∗
k a

∗
k e−µt

eAka
∗†
k b

∗†
k |−〉 (B.3)

where A are the eigenvalues of A (no summation on k); in the last expression there is no sum
on i in the exponents. Each factor can be developed into 1 + e−µtAi , so the whole expression
will be ∏

i

(1 + e−µtAi ) = det[1 + e−µtA]. (B.4)
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Consider now the same steps, but now replacing the fermions a
†
k and b

†
k by bosons α

†
k and

β
†
k as in (28); then we obtain the analogue of (B.2)

〈−| ef̄
†
(
T exp

(∫
dtVkl

(
α
†
kαl + β

†
kβl

)− µNbost

))
ef̄ |−〉 = 〈−| eβiαie−µt

eAjrα
†
j β

†
r |−〉

= det[1 − e−µtA]−1 (B.5)

which can again be proved by performing a rotation of the bosons to diagonalize A. After the
same step as in (B.3) the terms that survive are those with an equal number of the creation and
destruction operators and we can use

〈−|(αnα†n)|−〉 = n! (B.6)

to obtain the analogue of (B.4)∏
i

(
1 + e−µtAi + e−2µtA2

i + · · · ) =
∏

i

1

1 − e−µtAi

. (B.7)

In order to change the sign in the denominator of the rhs of (B.7) we use the operator (−1)Nbos

as

1

det[1 + A]
= 〈−|ef̄

†
(
T exp

(∫
dtVkl

(
α
†
kαl + β

†
kβl

)))
(−1)Nbos ef̄ |−〉. (B.8)

Appendix C

In this appendix, we show the ladder structure of the functions G defined in (36) and (45). The
common ingredient after developing the exponentials and matching the terms allowed by the
conservation of bosons and fermions is

〈−|(f † + f̄
†
)n
(
T exp

(∫
dt
[
Vkl

(
a
†
kal + b

†
kbl + α

†
kαl + β

†
kβl

)
− µ(Nbos + Nfer)

]))
Nfer(−1)Nbos(f + f̄ )n|−〉. (C.1)

We can commute the ‘evolution’ operator with Nfer and apply it to the right ket; the action of
the operator Nfer + Nbos on the left ket can be easily computed so the expression becomes

e−nµt 〈−| (f
† − f̄

†
)n

n!
Nfer

(
Aia

†
i b

†
i + Aiα

†
i β

†
i

)n
n!

|−〉. (C.2)

The expansion of the powers in terms of individual creators and destructors is

e−nµt (n!)2
∑

k1+···+kN=n

〈−|
∏
j

(bjaj − βjαj )
kj

kj !
Nfer

∏
j

(Aj )
kj

(
a
†
j b

†
j + α

†
jβ

†
j

)kj

kj !
|−〉. (C.3)

Here there is no sum on repeated indices inside the parentheses. Expanding further Nfer in
terms of fermion operators this term can be written as

e−nµt (n!)2
∑

l

∑
∑

ki=n

〈−| (blal − βlαl)
kl
(
a
†
l al + b

†
l bl

)(
a
†
l b

†
l + α

†
l β

†
l

)kl

2kl!kl!
Akl

l

∏
j �=l

(bj aj − βjαj )
kj

kj !

×Akj

j

(
a
†
j b

†
j + α

†
jβ

†
j

)kj

kj !
|−〉. (C.4)
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But for each l, at j �= l and kj > 0 a factor of the product above will be

(−Aj )
kj

( 〈−|βkj

j α
kj

j α
†kj

j β
†kj

j |−〉
kj !2

− k2
j 〈−|βkj −1

j α
kj −1
j α

†kj −1
j β

†kj −1
j |−〉〈−|bjaja

†
j b

†
j |−〉

kj !2

)

(C.5)

and we can easily see that this equals zero. So, inside each term of the sum on l, only that
with kl = n and the others kj = 0 will survive.

The sum (C.3) simplifies to

e−nµt (n!)2
∑

l

An
l (−1)n−1n2〈−|βn−1

l αn−1
l α

†n−1
l β

†n−1
l |−〉〈−|blal

a
†
l al+b

†
l bl

2 a
†
l b

†
l |−〉

n!2

= e−nµt
∑

l

An
l (−1)n−1. (C.6)

Now we can reconstruct the sum on n for the different cases; the Borel construction gives
the series

−
N∑

j=1

∞∑
n=1

(−e−µtAj )
n

n!
=

N∑
j=1

[1 − exp(−e−µtAj )]. (C.7)

The series from (C.7) are convergent at each time and for each trajectory (in a well-behaved,
smooth potential); one can formally sum the general terms (C.6) without the 1

n! and obtain

−
N∑

j=1

∞∑
n=1

(−e−µtAj )
n =

N∑
j=1

e−µtAj

1 + e−µtAj

. (C.8)

Using the exponential form of Aj , in the limit t → ∞, both (C.7) and (C.8) will give

G(µ) = GB(µ) =
N∑

j=1

θ(2λj − µ). (C.9)

Appendix D

In this appendix, we derive the fourth term in ε of the weak disorder expansion treated in
section 5.1. All the eigenstates of H0 can be obtained by destroying and creating fermions
in ψ0. Due to the fact that the perturbation contains two creators and two annihilators the
states connected by the perturbation with ψ0 are only those that differ from it by one or two
fermions. The ‘replica composition’ of the states connected by the perturbation must be the
same (two different replicas are not connected).

One set of states is formed by destroying one fermion from the first p and creating one
(from the last N − p); both fermions must be in the same replica family

ψbγjm = b
γ †
j bγ

mψ0 ψaγjm = a
γ †
j aγ

mψ0 (D.1)

where j � p,m > p and 1 � γ � q.
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These eigenstates will contribute to the Lyapunov exponent by a second-order perturbation
term

〈ψbγjm|HI |ψ0〉〈ψ0|HI |ψbγjm〉
εj − εm

+
〈ψaγjm|HI |ψ0〉〈ψ0|HI |ψaγjm〉

εj − εm

. (D.2)

The linear part in q of this term is

2q
〈BijBmi〉〈BjlBlm〉

εj − εm

. (D.3)

The states that have two different fermions are of three types

ψbγ in;bγ ′jm = b
γ †
i b

γ ′†
j bγ ′

m bγ
n ψ0

ψaγ in;bγ ′jm = a
γ †
i b

γ ′†
j bγ ′

m aγ
n ψ0 (D.4)

ψaγ in;aγ ′jm = a
γ †
i a

γ ′†
j aγ ′

m aγ
n ψ0

where i � p, j � p,m > p and n > p.
Each of them will contribute with terms of the form

〈ψγ̇ in;γ̇ ′jm|HI |ψγ̇ in;γ̇ ′jm〉〈ψ0|HI |ψγ̇ in;γ̇ ′jm〉
εj + εi − εm − εn

. (D.5)

giving a linear term in q

q
〈BimBjn〉〈BmiBnj 〉
εj + εi − εm − εn

. (D.6)

Apendix E

In this appendix, we apply the formula (76) to the perturbation expansion of the greatest
Lyapunov exponent of the random symplectic matrix defined in (77):

V (t) =
(

0 1
η(t) 0

)
. (E.1)

As seen from (90) it is enough to study the case of a Gaussian white noise η(t) with mean 1
and deviation s. In this case, one can write

V (t) =
(

0 1
1 0

)
+ s

(
0 0

η′(t) 0

)
(E.2)

where η′(t) is now a Gaussian white noise of unit deviation and we will treat s as a small
parameter. In the basis that diagonalizes the first matrix on the rhs of (E.2) we can write V (t)

as (
1 0
0 −1

)
+ sη′

( 1
2

1
2

− 1
2 − 1

2

)
(E.3)

We can now directly apply (76) with

B = η′
( 1

2
1
2

− 1
2 − 1

2

)
(E.4)

and ε1 = 1, ε2 = −1 and obtain the perturbative expansion of the greatest Lyapunov exponent
	1

	1 = 1 − s2

8
− 5s4

128
. (E.5)

As we can see in figure 1 the expansion is very accurate up to s = 1.
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Appendix F

In this appendix, we study the consistency equations for the collective variables in the
Hamiltonian mean-field model. As we can see in equation (32) we need quantities at µ = µ̄;
the derivation implied by the definition of the G function will be carried out on 〈Z(µ, µ̄)〉
after the saddle-point evaluation. So, we must take the derivative of expression (109). At this
point, the derivative reads

∂ZS(µ, µ̄)

∂µ

∣∣∣∣
µ̄=µ

= NZS ∂W(µ, µ̄)

∂µ

∣∣∣∣
µ̄=µ

+
∑

k

∂ZS(µ, µ̄)

∂Xk

∂Xk

∂µ

∣∣∣∣
µ̄=µ

(F.1)

where we take Xk , for k = 1, . . . , 20, to be the vector of the collective variables, and ZS is the
value of 〈Z(µ, µ̄)〉 at the saddle (109). We see that the second part of the rhs of this equation is
zero because of the consistency equations (113); in conclusion, we are interested in the values
of the collective variables at µ = µ̄ and only the direct dependence on the two variables of
W will be interesting for us. With this assumption we write the consistency equation for the
boson and fermion variables as

S l = 〈φL| exp
(−t
(
H

(1)
eff + µN̄

))
νl

q sin q(−1)Nbos |φR〉
eW

(F.2)

Ŝ l = 〈φL| exp
(−t
(
H

(1)
eff + µN̄

))
ν

l†
p sin q(−1)Nbos |φR〉

eW
(F.3)

Cl = 〈φL| exp
(−t
(
H

(1)
eff + µN̄

))
νl

q cos q(−1)Nbos |φR〉
eW

(F.4)

Ĉl = 〈φL| exp
(−t
(
H

(1)
eff + µN̄

))
ν

l†
p cos q(−1)Nbos |φR〉

eW
. (F.5)

All those equations contain expectation values of single boson and fermion operators which
necessarily vanish. This is normal, as we could expect from the beginning that those variables
integrate out, contributing only with a non-exponential prefactor. This prefactor (as expected
from the supersymmetry considerations) will be one in the limit µ = µ̄ but in the process of
derivation will give terms of order O(N−1).

There are four equations left which can be divided into two parts. The first part contains
the variables M̂x and M̂y

M̂x = J
〈φL| e−t (H

(1)
eff +µN̄)

(
∂
∂p

sin q + cos qν
l†
p νl

q

)
(−1)Nbos |φR〉

eW
(F.6)

M̂y = −J
〈φL| e−t (H

(1)
eff +µN̄)

(
∂
∂p

cos q − sin qν
l†
p νl

q

)
(−1)Nbos |φR〉

eW
. (F.7)

The first term on the rhs of these equations is zero (as demanded by the causality) and the
second is also zero, due to the supersymmetry.

Finally, the last two equations are the only non-trivial ones

Mx = 〈φL| e−t (H
(1)
eff +µN̄) cos q(−1)Nbos |φR〉

eW
(F.8)

My = 〈φL| e−t (H
(1)
eff +µN̄) sin q(−1)Nbos |φR〉

eW
. (F.9)
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Now the Hamiltonian H
(1)
eff is much simpler and reads

H
(1)
eff = ∂

∂p
(JM sin q − γp) + T γ

∂2

∂p2
− p

∂

∂q
− Jνl†

q νl
p + νl†

q νl
p + γ νl†

p νl
p + JM cos qνl†

p νl
q

(F.10)

where we also used the rotational symmetry (which defines a saddle manifold) on the space
of Mx and My which allows us to fix My = 0 and Mx = M; looking back at (109) and (F.1)
we can conclude that

G(µ) = N lim
t→∞

1

t
eNW ∂W(µ, µ̄)

∂µ

∣∣∣∣
µ̄=µ

. (F.11)

Formula (110) combined with the simple expression of Heff (F.10) allows us to infer that

G(µ) = NG(1)(µ) (F.12)

where G(1)(µ) characterize the Lyapunov spectrum of a single particle with the dynamics
(115); this spectrum contains in fact only two exponents.
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